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Abstract
A fundamental limitation of High Performance Liquid Chromatography (HPLC) is its relatively 
low peak capacity compared to other techniques. By far the most powerful approach to 
improving peak capacity is two-dimensional separations (2DLC), where the ideal peak capacity 
of the two-dimensional separation is the product of the individual peak capacities of the first and 
second dimension separations. While comprehensive 2DLC separations were reported almost a 
decade ago, the demands placed on the speed of the second dimension separation of these 
systems make the technique very slow, typically about one half-day per full 2D 
chromatogram. A solution to this extreme impediment to the widespread use of 2DLC is to 
apply Ultra-Fast High-Temperature Liquid Chromatography (UFHTLC) to the second 
dimension separation to allow fast and comprehensive sampling of the first dimension 
separation, thereby allowing full 2DLC analyses at ten-thirty minutes per analysis.  The 
concomitant decrease in eluent viscosity and increase in analyte diffusivity under UFHTLC 
conditions allows very efficient separations to be performed at extremely high column linear 
velocities in the second dimension separation. 

In this work we will show one-dimensional LC separations on the ten-second timescale; these are 
enabled by using UFHTLC conditions.  We will then show how these ultra-fast separations can 
be used in the second dimension of a fast, comprehensive 2DLC system, which we call LC ×
UFHTLC.  This fast 2DLC system can be used to greatly improve the resolution of components 
in complex samples, which are difficult to resolve using conventional HPLC.



A Common Problem in HPLC
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Peak capacity (nc)
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Peak Capacity Limitations of One-
Dimensional HPLC

#1a - Low peak capacity (nc) #1b – The number of 
components observable as single

peaks is even lower
cnmmes /2−=

Giddings, J. C. Multidimensional Chromatography:  Techniques and Applications; Marcel Dekker: New York, 1990

Comprehensive two-dimensional HPLC is the most efficient way to 
greatly increase the peak capacity of HPLC
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Requirements and Advantages in Conventional 
Two-Dimensional HPLC

Two conditions must be met for the technique to be considered “two-dimensional”
1. Orthogonality of separation mechanisms – This is a requirement imposed primarily on the 

stationary phase chemistry

2.   Separation gained in one dimension must not be diminished by separation in the other 
dimension

If these two conditions are 
satisfied, the maximum total 

peak capacity of the two-
dimensional system will be:

21 cccTotal nnn ×=

Giddings, J. C. Multidimensional Chromatography:  Techniques and Applications; Marcel Dekker: New York, 1990
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Comparison of Peak Capacity Production

Technique
Peak Capacity 

Limit (nc)
Analysis Time 

(hr)
Peak Capacity 

Production (nc/hr)

Capillary GC 103 100-101 102

GC x GC 104-105 101 103-104

HPLC 102-103 100-101 101-102

LC x LC 103-104 101-102 102

LC x UFHTLC 103-104 100-101 ?? 103 ??
2D-Gel Electrophoresis 103-104 102 101-102

Ultra Fast High Temperature LC has the potential to 
significantly improve the rate of peak capacity production in 

HPLC
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Improving the Speed of 2DLC Through the Use of 
UFHTLC – Effect of Temperature on Eluent Viscosity



Improving the Speed of 2DLC Through the Use of 
UFHTLC – Implications of Decreasing Viscosity

2
pd

uLP ηϕ
=∆

ϕ
η

L
Pd

u p
2∆

=

As the viscosity 
decreases, the linear 
velocity through the 
column is allowed to 
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Requirements for Fast 2DLC

Improving the speed of 2DLC is not possible without columns 
that have ALL of the following three characteristics for use in 
the second dimension separation:

1. The stationary phase used must be thermally and chemically 
stable under the conditions of UFHTLC

2. The columns (narrow-bore or smaller i.d.) packed with the 
stable stationary phase must be thermo-mechanically stable

3. The stationary phase must provide selectivities that are 
orthogonal to existing phases for the analytes of interest

Also, the column and eluent must be heated properly to avoid 
“thermal mismatch” band broadening



Effect of Temperature on the Shape of the 
van Deemter Curve
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For small molecules there is 
roughly a 4-fold lowering1 of the 

van Deemter C-term as the 
temperature is raised from 40 to 

150 oC

This allows practically useful 
column efficiencies to be obtained 
at extremely high column linear 

velocities

(1)  Yan, B.; Zhao, J.; Brown, J. S.; Blackwell, J.; Carr, P. W. Analytical Chemistry 2000, 72, 1253-1262.



Column Flow Rate 
(ml/min.)

ue 

(cm/s)
tm (sec.) k'max

N 
(Plates/column)

Peak 
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Schematic of a Complete LC × UFHTLC System
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An Example Application – Initial Work on 
a Screening Tool for Drugs of Abuse

Goal – To significantly improve the speed and comprehensiveness of a single 
HPLC method for screening for presence of opiates and amphetamines in 
biological samples

Background
• Opiates and amphetamines are two major classes of abused drugs that are routinely assayed 

for in public and private forensic labs.

• The International Olympic Committee has identified pseudoephedrine as a significantly 
abused stimulant1

• Immunoassay-based techniques are commonly employed as qualitative screening techniques 
because of relatively broad compound coverage, and the ability to significantly improve 
throughput.  However, these techniques are not perfect and have problems such as cross-
reactivity and the potential for false positives.

• GC/MS is commonly used for compound confirmation and quantitation.

• A main reason LC is not used is because it is not efficient.  It takes multiple methods (runs) to 
attain broad compound coverage because of low peak capacity.

1)  Gmeiner, G.; Geisendorfer, T.; Kainzbauer, J.; Nikolajevic, M.; Tausch, H. Journal of Chromatography, B: Analytical 
Technologies in the Biomedical and Life Sciences 2002, 768, 215-221
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The Amphetamines
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An Initial Column Selectivity Evaluation –
First Dimension Column

Condition 1:  Column, ACE-C18; Mobile phase, 20/80 ACN/20mM ammonium 
acetate, pH 5.0; Temperature, 40 oC
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An Initial Column Selectivity Evaluation –
Adding the Second Dimension Column

Condition 1:  Column, ACE-C18; Mobile phase, 20/80 ACN/20mM ammonium 
acetate, pH 5.0; Temperature, 40 oC

Condition 2:  Column, ZirChrom C-ZrO2; Mobile phase, 20/80 ACN/30mM formic 
acid, 15mM octylamine, 50µM EDTPA, pH 3.6; Temperature, 150 oC
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Thermal Instability of Amphetamines at 
pH - 5

LC Conditions:  Solute = Cathinone, 100 ug/ml;  Flow rate varied from 1.0 to 5.0 ml/min (see 
figure).; Temperature, 150 oC; 10 µl injection; Detection at 254 nm; Mobile phase, 40/60 
ACN/20mM ammonium acetate, pH 5.0; Column, 50 mm x 2.1 mm i.d. ZirChrom C-ZrO2
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Degradation as a Function of Eluent pH
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Cathinone and Methcathinone show the same behavior, however, their 
reactivities are insignificant on the chromatographic timescale of UFHTLC 
in the pH range of 2.1-3.6.



Strategy for Optimizing the Two-Dimensional 
Separation

1. Experimentally determine the retention of all solutes on the ACE-C18 column 
at three different eluent strengths

2. Fit retention data to Pade approximation

2'log φφ CBAk ++=

3. Experimentally determine the retention of all solutes on the C-ZrO2 column at 
seven different eluent strengths at 150 oC

4. Fit retention data to a parabolic function of φ

5. Optimize the minimum two-dimensional resolution by varying the eluent 
strength in each separation dimension independently
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Experimental vs. Predicted Retention
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A Prediction of the First Half of the Two-
Dimensional Separation
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Column – 150 mm x 2.1 mm I.d. ACE-C18, 5 micron
Flow rate – 0.08 ml/min.
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acetate, pH 5.0
Temperature – 40 oC
Injection volume – 5 µl of 100 µg/ml of each solute

2nd Dimension Conditions
Column – 33 mm x 2.1 mm i.d. ZirChrom C-ZrO2, 3 
micron
Flow rate – 5.00 ml/min.
Mobile phase –ACN/30mM Formic acid, 15mM 

Octylamine, 50µM EDTPA, pH 3.6

Temperature – 150 oC
Injection volume - 15 µl
Detection at 215 nm 

Time (min.) % ACN
0 60

15.8 65
19.0 50

1  Morphine 7  Pseudoephedrine
2  Oxymorphone 8  Methcathinone
3  Hydromorphone 9  Codeine
4  Phenylpropanolamine 10  Amphetamine
5  Cathinone 11  MDA
6  Ephedrine 12  Oxycodone

• Opiates
• Amphetamines

1 5

3

4

2

8

9 10

11

126

7



100 1200 1300 1400 1500960 980 1000 1020 1040 1060 1080
0

2

4

6

8

0

0 200 400 600 800
0

2

4

6

8

10

5                        10             15                      20                         25

ACE-C18 Retention Time (min.)

C
-Z

rO
2

R
e t

e n
t io

n 
T

i m
e  

( s
e c

.)

-200

-195

-190

-185

-180

-175

-170

0 2 4 6 8 10

C-ZrO2 Ret. time (sec.)

1

1 – Methcathinone
2 – Ephedrine
3 - Pseudoephedrine

2

3

An Initial Attempt at the First Half of 
the Separation

1

3

2

6

7

8

12

10 119

5

4



Extreme Column Overloading of Amines 
Severely Degrades the Two-Dimensional 

Resolution 
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Cathinone

2000 ng1000 ng

100 ng20 ng
LC Conditions

Column – 50 mm x 4.6 mm i.d.   
ACE-C18, 5 micron

Flow rate – 2.00 ml/min.

Mobile phase – 10/90 
ACN/20mM Ammonium 
acetate, pH 5.0

Temperature – 40 oC

Injection volume – 20 µl

Mass Plate
Injected (ng) Symmetry Count (N)

20 0.83 2800
100 0.80 2950
1000 0.59 2400
2000 0.47 1700



Conclusions and Future Work
1. There is a great potential for significantly increasing the speed of 

comprehensive two-dimensional liquid chromatography through the 
implementation of UFHTLC as the second separation dimension.

2. Ultra-fast one-dimensional separations on the ten-second timescale are 
feasible using narrow-bore columns at high temperatures.  This allows 
extremely high column linear velocities to be reached using practical 
volumetric flow rates, without excessive diminishing of the optimum 
efficiency of the column. 

3. There remains significant room for improvement of these ultra-fast 
separations. These gains will likely be brought about through the use of 
smaller particles, and columns packed better than those currently in use.

4. An initial attempt at the first half of a two-dimensional LC separation of 21 
commonly abused opiates and amphetamines has been successful.  The 
problem of severe overloading of the C18-silica column must first be solved 
before the full two-dimensional LC separation can be satisfactorily 
demonstrated.
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